Developer’s Guide
Device Simulation Framework for USB Devices

Introduction

This guide describes how to use the Device Simulation Framework (DSF) for USB Devices to simulate USB devices by using software. Every change to a device or its device driver should be accompanied by a broad matrix of tests. A tester may have to perform physical tests as part of their test suite. Using DSF, the driver developer can simulate hardware configurations and behaviors to perform the same tests. Simulation can also be used to validate hardware design. By using DSF, hardware manufacturers can expose USB device drivers to a more complete matrix of test scenarios, and can test a device driver before prototype hardware is available.

DSF for USB Devices consists of a set of drivers and libraries you can use to simulate USB devices. This kit enables you to add a simulated USB 2.0 controller to a computer, build simulated USB devices, connect them to Windows in different configurations, and control simulated device behaviors. For example, using DSF, you could develop a mouse simulator, connect it to the simulated USB 2.0 controller, and simulate various mouse clicks and test for interactions with your own USB device driver (even if no physical mouse is attached to the computer). Simulated USB devices and hubs enable faster development and more complete testing of USB device drivers and scenarios.

Installing Device Simulation Framework

DSF can only be installed on Microsoft Windows Vista, using the root administrator account. Windows creates the root administrator account when installing the operating system. Using the root administrator account, perform the following procedures to install the DSF runtime, the simulated USB controller, and DSF sample code. The DSF runtime installer provides pre-compiled versions of all DSF samples, so you don’t need to install the sample source code on your computer to run the sample code binaries.

Installing the DSF Runtime and Sample Binaries

To install the DSF runtime and sample code binaries, insert the WDK CD-ROM and navigate to the DSF directory using Explorer. Double-click DSFx86runtime.msi and step through the setup wizard.

Installing the Simulated USB Controller

To install the simulated USB controller, if you’ve installed to the default location, open a command prompt, type cd “C:\Program Files\dsf\softehci”, and then type softehcicfg /install.

Installing the WDK Build Environment and DSF Sample Code

To install the build environment and DSF sample source code, insert the WDK CD-ROM. The default setup application will run. On the Custom Setup window, expand Microsoft Windows Drivers Kit, expand Driver Development Kit, and set Build Environment to Entire feature will be installed on local hard drive. To install the DSF runtime and sample code, set Device Simulation Framework to Will be installed on local hard drive. Click Next and finish the installation.

Uninstalling the Simulated USB Controller

To remove the simulated USB controller, if you’ve installed to the default location, open a command prompt, type cd “C:\Program Files\dsf\softehci”, and then type softehcicfg /remove.

Samples

DSF includes sample code that illustrates how to simulate different USB device types. The following sections contain descriptions and installation instructions for each sample.

By default, the sample source code installs to c:\WinDDK\buildNumber\src\Test\DSF\USB. To build the samples, from the Windows Start menu, click All Programs, click Windows Driver Kits, click WDK, click Build Environments, click Windows Vista and Windows Server Longhorn, and click the build environment for your computer’s architecture. At the build command prompt, type cd src\Test\DSF\USB. Then type build -cZP.

SoftHidDevice

This sample demonstrates how to simulate a human interface device (HID). You can use this sample source code as a starting point for simulating your own HID device. The USB HID keyboard sample uses this sample to implement a keyboard simulator.

USB HID Keyboard

This sample simulates a USB keyboard device. The script creates a keyboard device simulation and plugs it into the simulated USB bus.

To run the script, if you’ve installed to the default location, open a command prompt, type cd “c:\program files\dsf\usbhid” and type cscript TestInputKbd.wsf.

Windows indicates that a Microsoft Natural Keyboard has been found, and loads the appropriate device drivers. The script waits 15 seconds and then starts passing simulated key presses.

The user will notice words appearing and deleting as the script simulates keystrokes. Next the script will run notepad.exe which the user will see open, then the script will close the notepad window.

To modify this sample, build your new InputKbd.dll and/or SoftHIDDevice.dll and copy these files to c:\Program Files\dsf\usbhid.

Bulk Loopback Device

This sample demonstrates how to simulate a bulk USB transaction, by emulating an Intel Bulk USB test board.

To run the script, if you’ve installed to the default location, open a command prompt, type cd “c:\program files\dsf\USBLoopback” and type cscript RunLoopbackSample.wsf.

The host system detects the new device and installs the BulkUSB.sys device driver. After the USB enumeration for the new device, the user can choose to run the device in either polled mode or event mode.

In event mode, the loopback device receives data from the host controller through a call to the OnWriteTransfer function, for the OUT endpoint. This event is sent from kernel mode, and occurs on an arbitrary thread. The device passes this data to the IN endpoint by calling QueueINData. This call adds data to the IN endpoint queue and the data is read from the queue when the IN endpoint receives a request for data from the host controller.

In polled mode, the loopback device queries the OUT endpoint to determine if there is any data queued. The device calls DrainOUTQueue with maxTransfers set to zero, which indicates that the device wants to know how many items are in the queue. If data is present, the device reads the data from the endpoint, one request at a time, using DrainOUTQueue. The device then passes this data to the IN endpoint by calling QueueINData, adding data to the IN endpoint queue. This data is read from the queue when the IN endpoint receives a request for data from the host controller.

When the device has no data to process it sends an event to the script asking if the user wishes to continue. The user can end the simulation by pressing a key.

RwBulk.exe sends and receives loopback device data. Type RwBulk.exe /u to see the how the device and the endpoints are configured. The amount of data can be adjusted. The IN endpoint is zero and the OUT endpoint is one. These values need to remain constant as the endpoints only work in one direction. To send and receive 512 bytes from the device, type:

RwBulk.exe –r 512 –w 512 –i 0 –o 1

To modify this sample, build your SoftUSBLoopback.dll and copy it to c:\Program Files\dsf\usbloopback.

Streaming USB Audio

This sample partially simulates a Microsoft Digital Sounds System-80 device. It is limited to audio output only. It uses the SoftUSBEndpoint queuing feature in its isochronous-OUT endpoint to accumulate audio data from the host. The SoftUSBEndpoint object periodically discards the audio data as its queue reaches a configurable threshold.

How DSF Simulates USB Devices

The DSF programming environment includes COM objects that implement various components of a simulation, a set of runtime services, and a controller simulator implemented as a lower device filter on a DSF-specific version of the USB 2.0 miniport (usbehci_dsf.sys). The miniport communicates with simulated USB devices as if they were real hardware, but the controller simulator intercepts register and DMA accesses, and generates simulated hardware interrupts. USB device simulators are implemented as user-mode executables in any form (DLL, executable, service, COM object, or .NET object) and in any language that can implement COM client code. USB device simulators use a COM object supplied by the framework called SoftUSBDevice that handles all aspects of USB transactions, the device’s descriptors, and interaction with the controller. The following diagram illustrates the USB device simulation architecture using a DLL to package the USB device simulator.

[image: image1.png]user
Mode.

Kernel
Mode.

USB Driver Stack

IHV Device Driver

H

USB Device Class
Driver

H

USB Hub (8us)

e
T v s
H o oot
155 bevice S
St L vssoreers
,s Usbehci.sys
SonysBDevice {
Ot | bl simureauss

L

Controller

b soncnisys

Figure 1 - DSF Device Simulation Architecture
In this illustration, the USB device simulator is implemented as an in-proc COM server in a DLL. A test script creates an instance of the simulator object which in turn uses its constructor to create and configure a SoftUSBDevice object. The SoftUSBDevice object also exposes ancillary objects (SoftUSBConfiguration, SoftUSBInterface, and SoftUSBEndpoint , not shown above) that encapsulate the functionality of the various components of a USB device, including its configurations, interfaces, and endpoints. These objects expose properties that allow them to generate the appropriate device descriptors in response to requests from the simulated controller. The device simulator creates these objects and sets their properties according to the device class specification. For example, a bulk-only storage device simulator might create two SoftUSBEndpoint objects and configure them for its bulk-IN and bulk-OUT endpoints: a SoftUSBInterface object to contain them, and a SoftUSBConfiguration object to contain the interface. It would then associate the SoftUSBConfiguration with the SoftUSBDevice object.

After the test script creates the USB device simulator, it creates a DSF object. This object provides access to the simulation framework runtime. The DSF object has a HotPlug method that enables the script to connect the device simulator to the root hub of the simulated controller. DSF.HotPlug informs the simulated controller of the connection and the controller simulator in turn manipulates its registers to reflect the new connection state, and simulates a hardware interrupt. The USB 2.0 miniport responds to the interrupt by detecting and reporting the new device as if real hardware had been attached. The miniport and the entire host system cannot detect the difference between real and simulated hardware.

As the USB 2.0 miniport submits transactions for execution to the simulated controller, the controller reads them from the asynchronous and periodic schedules and executes them according to the USB 2.0 and EHCI specifications. Transactions are executed by calling into SoftUSBEndpoint objects that represent the target of the data transfer. When a SoftUSBEndpoint object receives notification that the controller is attempting a data transfer, it can either fire an event into the device simulator to request the data, or it can use data that has been queued up previously within the SoftUSBEndpoint object to respond to the transfer request.

The test script or application can control the device simulator’s behavior, and initiate interaction with the simulated device within the operating system. For example, a test script for a storage device simulator can initiate I/O to the device by reading a file from it while also providing the data that represents the file to the device simulator.

Simulating HID Devices

For creating USB human interface device (HID) simulators, the framework provides an additional object called SoftHIDProtocolXlator that translates between bus-independent HID transactions and USB HID transactions. It configures a SoftUSBDevice object according to the USB HID device class specification and offers an interface to the device simulator to configure its HID descriptors and submit HID reports to the host operating system. The following diagram describes the USB HID simulation architecture:
[image: image2.png]USB Driver Stack

HID Device Driver
Hidelass.sys, etc.

H

HID Device Class.

e
p— i
T e
=i
User Simulator DLL Usbhub.sys
Mode. 3 t
o Canrtr
e eamomraeseona
s v
: Usbehci.sys
¥
TR $
S j¢¥ " Simulated use
T
ose runime [“PL_SEN e

Figure 2 - DSF Device Simulation Architecture for HID Devices
In the HID case, the device simulator creates a SoftHIDProtocolXlator object and sets its properties using its HID descriptors. The HID device simulator exposes an interface to test scripts and applications that allow them to initiate HID events such as moving a joystick or clicking a mouse button. The HID device simulator implements this interface by creating HID reports and calling SoftHIDProtocolXlator to transfer them to the host. For more information about HID devices, see Device Stacks for USB Keyboard, Mouse, and Joystick Devices.

DSF COM Components

Test applications, test scripts, and USB device simulators model hardware configurations and behavior by configuring and controlling COM objects. DSF includes COM objects that simulate most behaviors of USB devices and hubs. Additional objects simplify the modeling of HID devices, including a keyboard. COM objects for event logging and state persistence between sessions are also provided.

SoftUSBDevice

SoftUSBDevice and its ancillary objects SoftUSBConfiguration, SoftUSBInterface, and SoftUSBEndpoint, are the primary objects you will use to simulate your USB device. These objects implement the behaviors common across all USB devices. By setting properties to describe your USB hardware characteristics and handling device events in your code, these objects will simulate most USB device behavior. For more details about controlling these objects, see Simulating USB Devices using SoftUSBDevice.

SoftUSBHub

SoftUSBHub enables you to simulate an external USB hub. You can configure SoftUSBHub as either a USB 1.1 or 2.0 device, specify the number of ports, power usage, and other properties of physical USB hubs. By simulating various hub scenarios, you can determine what happens across multiple hub configurations and speeds, when devices intermix, or are removed and re-added to the hub ports.

SoftHIDProtocolXlator

When a HID device connects to a computer, Windows asks the new device for its HID parameters. This COM object translates HID reports into USB transactions. USB human interface device (HID) simulators use the SoftHIDProtocolXlator object to simplify and abstract HID device simulations by providing translation between HID descriptors and reports and USB transactions, based on the USB HID class device specification. This object does most of the work of simulating a USB human interface device. It abstracts HID functionality into a bus-independent format.
InputKBD

For keyboard simulators, this COM object abstracts HID into a generic keyboard protocol. To create a new keyboard simulator, use this object in conjunction with the SoftHIDProtocolXlator object. The InputKBD object exposes methods such as PressKey and ReleaseKey. This obviates the need for a keyboard simulator to formulate its own HID descriptors and reports. This object is provided by the USB HID Keyboard sample.
IDSFLog

The IDSFLog object provides a COM interface that enables test scripts, test applications, and device simulators to use Event Tracing for Windows. For more information, see Platform SDK: Event Tracing.

IDSFPropertyBag

The IDSFPropertyBag COM object enables test applications to associate private state with an instance of a USB 2.0 controller simulator. This state is preserved across reboots..

Simulating USB Devices using SoftUSBDevice

[image: image3.png]ISoftUSBDevice

¥ '

Endpoint0 Configurations
ISoftUSBEndpoint ISoftUSBConfigList
2
DeviceQualifier Ttem
ISoftUSBDeviceQualifier ISoftUSBConfiguration
v
Strings Interfaces
ISoftUSBStringList ISoftUSBInterfaceList
v v
Item Item
1SoftUSBString 1SoftUSBInterface
v
Endpoints
ISoftUSBEndpointList
Item
ISoftUSBEndpointEvents O ISoftUSBEndp

Figure 3 – Structure of USB Simulator Object Hierarchy

After creating a SoftUSBDevice object, the device simulator configures it by creating the ancillary objects and adding them to the containing collections. Endpoint zero is created by SoftUSBDevice itself and can be configured immediately following object creation. All collections use zero-based numerical indexes. Note that collection indexes do not necessarily correspond to the configuration, interface, and endpoint numbers used in the USB 2.0 specification. For example, SoftUSBConfiguration.Interfaces(3) is not necessarily interface number three within that configuration. The interface number is exposed via the SoftUSBInterface.InterfaceNumber property. The one collection that does attach meaning to the indexes is SoftUSBDevice.Strings. The index of a SoftUSBString object in this collection is the same as the string descriptor number configured within its associated object. For example, SoftUSBDevice.Manufacturer contains the index of the SoftUSBString object in SoftUSBDevice.Strings that contains the manufacturer string descriptor text.

Once configured, the device can be plugged into a simulated controller using DSF.HotPlug or SoftUSBHubPort.HotPlug. It will then handle all aspects of connection to the host system. The object responds to standard device requests received on endpoint zero using descriptors generated by the various ancillary objects configured earlier by the device simulator. The client can customize responses to standard requests by implementing an event sink for the event interface ISoftUSBEndpointEvents exposed by the SoftUSBEndpoint object referenced by SoftUSBDevice.Enpoint0.

Packaging a USB Device Simulator

A USB device simulator can be implemented in any COM client compliant language. The only requirement is that the simulator be able to create and call methods on the COM objects provided by the framework (e.g. SoftUSBDevice, SoftUSBEndpoint). The simulator can be packaged in any executable format that is convenient – executable, DLL, service, in-proc or local server COM object, or .NET object. Simulators are typically packaged as COM or .NET objects and designed to export interfaces that provide the functionality needed by test applications to control them.

Using the USB External Hub Simulator

The SoftUSBHub object interface enables a test application to configure all aspects of the hub and access the current hub status. The hub simulator can be configured to behave as a USB 1.1 or a USB 2.0 hub.

SoftUSBHub exposes a child collection of SoftUSBHubPort objects. Each port object encapsulates the state of a single hub port. Port object properties include configuration and status (where the configuration property values are used to build the hub descriptor returned to the host). The port object exposes HotPlug and Unplug methods to connect and disconnect a USB device simulator to and from the hub. USB device simulators can be connected and disconnected to and from a hub regardless of whether the hub is currently connected upstream.

When a USB device simulator connects to a hub, if the hub is connected to the USB bus and the device has power, then the hub reports the connection to the simulated controller. The controller stores information about the device and the external hub port. A device has power if it is either self-powered and turned on (i.e. SoftUSBDevice.SelfPowered and SoftUSBDevice.Powered are both true), or it is bus-powered and the hub port has power. The hub also informs the device of its own power status and operating speed and the device sets SoftUSBDevice.OperatingSpeed (and SoftUSBDevice.Powered for bus-powered devices) based on this information.

When the controller needs to execute a transaction to a USB device simulator connected to an external hub, it asks the external hub to execute the transaction. If the hub is operational and the device’s port is active (i.e. enabled, not suspended, and powered) then the hub forwards the transaction to the corresponding SoftUSBEndpoint object.

When the status of a root port hub is changed by the host or the controller (enabled/disabled or suspended) and an external hub is connected to that port, the controller informs the hub of its new status on the bus. The hub passes the change to any downstream hubs and so on down the bus segment. This allows the hub to respond appropriately to subsequent bus transactions. Note that these are effectively hub-global changes that are represented by internal hub status and not visible directly to the host. They are visible to test applications via the SoftUSBHub.UpstreamStatus property on the hub.

When a hub is disconnected from its parent, the parent informs the hub which then propagates the new upstream status down the bus segment. When a device is disconnected from a hub, the hub informs the device of its new upstream status. The device responds by setting SoftUSBDevice.OperatingSpeed and SoftUSBDevice.Powered (for bus-powered devices).

A test application can initiate a resume on a hub port though there is no possibility of performing a system wake as the test application still needs to run on that system.

Hub and port power states can be manipulated by the test applications through properties on those objects.The SoftUSBHubPort object also includes an Indicator property that simulates an indicator light on a hardware hub. Test applications can check the state of this property to determine whether the host has set it properly.

A test application can connect devices to hubs before the hub itself is connected to the simulated USB. This enables simulation of hot plugging whole bus segments with arbitrary configurations of devices and hubs. Test applications can also connect self-powered devices that are currently configured as powered-off regardless of whether the parent hub is connected to the simulated USB.

